Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Gut Microbes ; 16(1): 2300846, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38197259

RESUMEN

Early detection and surgical treatment are essential to achieve a good outcome in gastric cancer (GC). Stage IV and recurrent GC have a poor prognosis. Therefore, new treatments for GC are needed. We investigated the intestinal microbiome of GC patients and attempted to reverse the immunosuppression of the immune and cancer cells of GC patients through the modulation of microbiome metabolites. We evaluated the levels of programmed death-ligand 1 (PD-L1) and interleukin (IL)-10 in the peripheral blood immunocytes of GC patients. Cancer tissues were obtained from patients who underwent surgical resection of GC, and stained sections of cancer tissues were visualized via confocal microscopy. The intestinal microbiome was analyzed using stool samples of healthy individuals and GC patients. Patient-derived avatar model was developed by injecting peripheral blood mononuclear cells (PBMCs) from advanced GC (AGC) patients into NSG mice, followed by injection of AGS cells. PD-L1 and IL-10 had higher expression levels in immune cells of GC patients than in those of healthy controls. The levels of immunosuppressive factors were increased in the immune and tumor cells of tumor tissues of GC patients. The abundances of Faecalibacterium and Bifidobacterium in the intestinal flora were lower in GC patients than in healthy individuals. Butyrate, a representative microbiome metabolite, suppressed the expression levels of PD-L1 and IL-10 in immune cells. In addition, the PBMCs of AGC patients showed increased levels of immunosuppressive factors in the avatar mouse model. Butyrate inhibited tumor growth in mice. Restoration of the intestinal microbiome and its metabolic functions inhibit tumor growth and reverse the immunosuppression due to increased PD-L1 and IL-10 levels in PBMCs and tumor cells of GC patients.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias Gástricas , Humanos , Animales , Ratones , Antígeno B7-H1 , Butiratos , Interleucina-10/genética , Macrófagos Asociados a Tumores , Leucocitos Mononucleares , Recurrencia Local de Neoplasia , Inmunosupresores
2.
Cell Commun Signal ; 21(1): 320, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946227

RESUMEN

BACKGROUND: Interleukin (IL)-10-producing B (B10) cells are generated in response to signals from the tumor microenvironment and promote tumor growth by interacting with B10 cells. We investigated the distributions of immune cells in peripheral blood and tumor tissue samples from patients with gastric cancer (GC). METHODS: Patients with GC who underwent radical gastrectomy in Seoul St. Mary's Hospital between August 2020 and May 2021 were enrolled in this study. Forty-two samples of peripheral blood were collected, and a pair of gastric mucosal samples (normal and cancerous mucosa; did not influence tumor diagnosis or staging) was collected from each patient after surgery. B10 cells in peripheral blood and cancer mucosa samples were investigated by flow cytometry and immunofluorescence. AGS cells, gastric cancer cell line, were cultured with IL-10 and measured cell death and cytokine secretion. Also, AGS cells were co-cultured with CD19 + B cells and measured cytokine secretion. RESULTS: The population of B10 cells was significantly larger in the blood of patients with GC compared with controls. In confocal images of gastric mucosal tissues, cancerous mucosa contained more B10 cells than normal mucosa. The population of B10 cells in cancerous mucosa increased with cancer stage. When AGS cells were cultured under cell-death conditions, cellular necrosis was significantly decreased, and proliferation was increased, for 1 day after IL-10 stimulation. Tumor necrosis factor (TNF)-α, IL-8, IL-1ß, and vascular endothelial growth factor secretion by cancer cells was significantly increased by coculture of AGS cells with GC-derived CD19+ B cells. CONCLUSIONS: B cells may be one of the populations that promote carcinogenesis by inducing the production of inflammatory mediators, such as IL-10, in GC. Targeting B10 cells activity could improve the outcomes of antitumor immunotherapy. Video Abstract.


Asunto(s)
Interleucina-10 , Neoplasias Gástricas , Humanos , Factor A de Crecimiento Endotelial Vascular , Linfocitos B , Antígenos CD19 , Factor de Necrosis Tumoral alfa/metabolismo , Microambiente Tumoral
3.
Arthritis Res Ther ; 25(1): 130, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37496081

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is a systemic chronic inflammatory disease that leads to joint destruction and functional disability due to the targeting of self-antigens present in the synovium, cartilage, and bone. RA is caused by a number of complex factors, including genetics, environment, dietary habits, and altered intestinal microbial flora. Microorganisms in the gut bind to nod-like receptors and Toll-like receptors to regulate the immune system and produce various metabolites, such as short-chain fatty acids (SCFAs) that interact directly with the host. Faecalibacterium prausnitzii is a representative bacterium that produces butyrate, a well-known immunomodulatory agent in the body, and this microbe exerts anti-inflammatory effects in autoimmune diseases. METHODS: In this study, F. prausnitzii was administered in a mouse model of RA, to investigate RA pathology and changes in the intestinal microbial flora. Using collagen-induced arthritic mice, which is a representative animal model of RA, we administered F. prausnitzii orally for 7 weeks. RESULTS: The arthritis score and joint tissue damage were decreased in the mice administered F. prausnitzii compared with the vehicle-treated group. In addition, administration of F. prausnitzii reduced the abundance of systemic immune cells that secrete the pro-inflammatory cytokine IL-17 and induced changes in SCFA concentrations and the intestinal microbial flora composition. It also resulted in decreased lactate and acetate concentrations, an increased butyrate concentration, and altered compositions of bacteria known to exacerbate or improve RA. CONCLUSION: These results suggest that F. prausnitzii exerts a therapeutic effect on RA by regulation of IL-17 producing cells. In addition, F. prausnitzii modify the microbial flora composition and short chain fatty acids in experimental RA mouse model.


Asunto(s)
Artritis Reumatoide , Faecalibacterium prausnitzii , Ratones , Animales , Faecalibacterium prausnitzii/metabolismo , Interleucina-17/metabolismo , Ácidos Grasos Volátiles/metabolismo , Modelos Animales de Enfermedad , Butiratos , Artritis Reumatoide/tratamiento farmacológico
4.
Cell Commun Signal ; 21(1): 135, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316856

RESUMEN

BACKGROUND: Sjögren's syndrome (SS) is an autoimmune disease characterized by inflammation of the exocrine gland. An imbalance of gut microbiota has been linked to SS. However, the molecular mechanism is unclear. We investigated the effects of Lactobacillus acidophilus (L. acidophilus) and propionate on the development and progression of SS in mouse model. METHODS: We compared the gut microbiomes of young and old mice. We administered L. acidophilus and propionate up to 24 weeks. The saliva flow rate and the histopathology of the salivary glands were investigated, and the effects of propionate on the STIM1-STING signaling pathway were evaluated in vitro. RESULTS: Lactobacillaceae and Lactobacillus were decreased in aged mice. SS symptoms were ameliorated by L. acidophilus. The abundance of propionate-producing bacterial was increased by L. acidophilus. Propionate ameliorated the development and progression of SS by inhibiting the STIM1-STING signaling pathway. CONCLUSIONS: The findings suggest that Lactobacillus acidophilus and propionate have therapeutic potential for SS. Video Abstract.


Asunto(s)
Síndrome de Sjögren , Animales , Ratones , Lactobacillus acidophilus , Propionatos , Inflamación , Transducción de Señal
5.
Cell Commun Signal ; 21(1): 98, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37143079

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease that causes joint swelling and inflammation and can involve the entire body. RA is characterized by the increase of pro-inflammatory cytokines such as interleukin (IL) and tumor necrosis factor, and the over-activation of T lymphocytes and B lymphocytes, which may lead to severe chronic inflammation of joints. However, despite numerous studies the pathogenesis and treatment of RA remain unresolved. This study investigated the use of small heterodimer partner-interacting leucine zipper protein (SMILE) overexpression to treat a mouse model of RA. SMILE is an insulin-inducible corepressor through adenosine monophosphate-activated kinase (AMPK) signaling pathway. The injection of a SMILE overexpression vector to mice with collagen induced-arthritis resulted in a milder clinical pathology and a reduced incidence of arthritis, less joint tissue damage, and lower levels of Th17 cells and plasma B cells in the spleen. Immunohistochemistry of the joint tissue showed that SMILE decreased B-cell activating factor (BAFF) receptor (BAFF-R), mTOR, and STAT3 expression but increased AMPK expression. In SMILE-overexpressing transgenic mice with collagen antibody-induced arthritis (CAIA), a decrease in the arthritis score and reductions in tissue damage, the number of B cells, and antibody production were observed. The treatment of immune cells in vitro with curcumin, a known SMILE-inducing agent, led to decreases in plasma B cells, germinal center B cells, IL-17-producing B cells, and BAFF-R-positive B cells. Taken together, our findings demonstrate the therapeutic potential of SMILE in RA, based on its inhibition of B cell activation mediated by the AMPK/mTOR and STAT3 signaling pathway and BAFF-R expression. Video abstract.


Asunto(s)
Artritis Experimental , Enfermedades Autoinmunes , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Colágeno , Inflamación , Leucina Zippers , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
6.
Front Immunol ; 14: 1096565, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37143677

RESUMEN

Introduction: Dysbiosis is an environmental factor that affects the induction of axial spondyloarthritis (axSpA) pathogenesis. In the present study, we investigated differences in the gut microbiota of patients with axSpA and revealed an association between specific gut microbiota and their metabolites, and SpA pathogenesis. Method: Using 16S rRNA sequencing data derived from feces samples of 33 axSpA patients and 20 healthy controls (HCs), we examined the compositions of their gut microbiomes. Results: As a result, axSpA patients were found to have decreased α-diversity compared to HCs, indicating that axSpA patients have less diverse microbiomes. In particular, at the species level, Bacteroides and Streptococcus were more abundant in axSpA patients than in HCs, whereas Faecalibacterium (F). prausnitzii, a butyrate-producing bacteria, was more abundant in HCs. Thus, we decided to investigate whether F. prausnitzii was associated with health conditions by inoculating F. prausnitzii (0.1, 1, and 10 µg/mL) or by administrating butyrate (0.5 mM) into CD4+ T cells derived from axSpA patients. The levels of IL-17A and IL-10 in the CD4+ T cell culture media were then measured. We also assessed osteoclast formation by administrating butyrate to the axSpA-derived peripheral blood mononuclear cells. The CD4+ IL-17A+ T cell differentiation, IL-17A levels were decreased, whereas IL-10 was increased by F. prausnitzii inoculation. Butyrate reduced CD4+ IL-17A+ T cell differentiation and osteoclastogenesis. Discussion: We found that CD4+ IL-17A+ T cell polarization was reduced, when F. prausnitzii or butyrate were introduced into curdlan-induced SpA mice or CD4+ T cells of axSpA patient. Consistently, butyrate treatment was associated with the reduction of arthritis scores and inflammation levels in SpA mice. Taken together, we concluded that the reduced abundance of butyrate-producing microbes, particularly F. prausnitzii, may be associated with axSpA pathogenesis.


Asunto(s)
Espondiloartritis Axial , Microbioma Gastrointestinal , Espondilitis Anquilosante , Ratones , Animales , Interleucina-10 , Interleucina-17 , Disbiosis/microbiología , Butiratos/metabolismo , ARN Ribosómico 16S/genética , Leucocitos Mononucleares/metabolismo , Microbioma Gastrointestinal/genética
7.
Front Immunol ; 14: 1138743, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153541

RESUMEN

Introduction: Although tumor, node, metastasis (TNM) staging has been used for prognostic assessment of gastric cancer (GC), the prognosis may vary among patients with the same TNM stage. Recently, the TNM-Immune (TNM-I) classification staging system has been used for prognostic assessment of colorectal cancer based on intra-tumor T-cell status, which is a superior prognostic factor compared with the American Joint Committee on Cancer staging manual. However, an immunoscoring system with prognostic significance for GC has not been established. Method: Here, we evaluated immune phenotypes in cancer and normal tissues, then examined correlations between tissues and peripheral blood. GC patients who underwent gastrectomy at Seoul St. Mary's Hospital between February 2000 and May 2021 were included. We collected 43 peripheral blood samples preoperatively and a pair of gastric mucosal samples postoperatively, including normal and cancer mucosa, which did not influence tumor diagnosis and staging. Tissue microarray samples of GC were collected from 136 patients during surgery. We investigated correlations of immune phenotypes between tissues and peripheral blood using immunofluorescence imaging and flow cytometry, respectively. GC mucosa exhibited an increased number of CD4+ T cells, as well as increased expression levels of immunosuppressive markers (e.g., programmed death-ligand-1 [PD-L1], cytotoxic T lymphocyte antigen-4 [CTLA-4], and interleukin-10), in CD4+ T cells and non-T cells. Result: The expression levels of immunosuppressive markers were significantly increased in cancer tissues and peripheral blood mononuclear cells. In gastric mucosal tissues and peripheral blood of GC patients, similar immunosuppression phenotypes were observed, including increased numbers of PD-L1- and CTLA-4-positive T cells. Discussion: Therefore, peripheral blood analysis may be an important tool for prognostic assessment of GC patients.


Asunto(s)
Neoplasias Gástricas , Humanos , Pronóstico , Neoplasias Gástricas/patología , Antígeno B7-H1/metabolismo , Antígeno CTLA-4 , Leucocitos Mononucleares/metabolismo
8.
PLoS One ; 18(4): e0281834, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37079558

RESUMEN

Interleukin-1ß (IL-1ß) is one of the most potent pro-inflammatory cytokines implicated in a wide range of autoinflammatory, autoimmune, infectious, and degenerative diseases. Therefore, many researchers have focused on developing therapeutic molecules that inhibit IL-1ß-IL-1 receptor 1 (IL-1R1) interaction for the treatment of IL-1-related diseases. Among IL-1-related diseases, osteoarthritis (OA), is characterized by progressive cartilage destruction, chondrocyte inflammation, and extracellular matrix (ECM) degradation. Tannic acid (TA) has been proposed to have multiple beneficial effects, including anti-inflammatory, anti-oxidant, and anti-tumor activities. However, it is unclear whether TA plays a role in anti-IL-1ß activity by blocking IL-1ß-IL-1R1 interaction in OA. In this study, we report the anti-IL-1ß activity of TA in the progression of OA in both in vitro human OA chondrocytes and in vivo rat OA models. Herein, using-ELISA-based screening, natural compound candidates capable of inhibiting the IL-1ß-IL-1R1 interaction were identified. Among selected candidates, TA showed hindering IL-1ß-IL-1R1 interaction by direct binding to IL-1ß using surface plasmon resonance (SPR) assay. In addition, TA inhibited IL-1ß bioactivity in HEK-Blue IL-1-dependent reporter cell line. TA also inhibited IL-1ß-induced expression of inducible nitric oxide synthase (NOS2), cyclooxygenase-2 (COX-2), IL-6, tumor necrosis factor-alpha (TNF-α), nitric oxide (NO), and prostaglandin E2 (PGE2) in human OA chondrocytes. Moreover, TA downregulated IL-1ß-stimulated matrix metalloproteinase (MMP)3, MMP13, ADAM metallopeptidase with thrombospondin type 1 motif (ADAMTS)4, and ADAMTS5, while upregulating collagen type II (COL2A1) and aggrecan (ACAN). Mechanistically, we confirmed that TA suppressed IL-1ß-induced MAPK and NF-κB activation. The protective effects of TA were also observed in a monosodium iodoacetamide (MIA)-induced rat OA model by reducing pain and cartilage degradation and inhibiting IL-1ß-mediated inflammation. Collectively, our results provide evidence that TA plays a potential role in OA and IL-1ß-related diseases by hindering IL-1ß-IL-1R1 interaction and suppressing IL-1ß bioactivity.


Asunto(s)
Antiinflamatorios , Osteoartritis , Ratas , Humanos , Animales , Interleucina-1beta/metabolismo , Antiinflamatorios/uso terapéutico , FN-kappa B/metabolismo , Inflamación/patología , Cartílago/metabolismo , Osteoartritis/inducido químicamente , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Condrocitos/metabolismo , Taninos/farmacología , Taninos/metabolismo , Células Cultivadas
9.
PLoS One ; 17(12): e0277692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36574392

RESUMEN

Obesity is a medical term used to describe an over-accumulation of adipose tissue. It causes abnormal physiological and pathological processes in the body. Obesity is associated with systemic inflammation and abnormalities in immune cell function. Rebamipide, an amino acid derivative of 2-(1H)-quinolinone, has been used as a therapeutic for the protection from mucosal damage. Our previous studies have demonstrated that rebamipide treatment regulates lipid metabolism and inflammation, leading to prevention of weight gain in high-fat diet mice. In this study, mice were put on a high calorie diet for 11 weeks while receiving injections of rebamipide. Rebamipide treatment reduced the body weight, liver weight and blood glucose levels compared to control mice and reduced both glucose and insulin resistance. Fat accumulation has been shown to cause pro-inflammatory activity in mice. Treatment with rebamipide decreased the prevalence of inflammatory cells such as Th2, Th17 and M1 macrophages and increased anti-inflammatory Treg and M2 macrophages in epididymal fat tissue. Additionally, rebamipide addition inhibited adipocyte differentiation in 3T3-L1 cell lines. Taken together, our study demonstrates that rebamipide treatment is a novel and effective method to prevent diet-induced obesity.


Asunto(s)
Resistencia a la Insulina , Quinolonas , Ratones , Animales , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Obesidad/complicaciones , Quinolonas/farmacología , Quinolonas/uso terapéutico , Quinolonas/metabolismo , Inflamación/metabolismo , Fenotipo , Dieta Alta en Grasa/efectos adversos , Células 3T3-L1 , Ratones Endogámicos C57BL
10.
Sci Adv ; 8(47): eabo5284, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36427299

RESUMEN

Local inflammation in the joint is considered to contribute to osteoarthritis (OA) progression. Here, we describe an immunomodulating nanoparticle for OA treatment. Intradermal injection of lipid nanoparticles (LNPs) loaded with type II collagen (Col II) and rapamycin (LNP-Col II-R) into OA mice effectively induced Col II-specific anti-inflammatory regulatory T cells, substantially increased anti-inflammatory cytokine expression, and reduced inflammatory immune cells and proinflammatory cytokine expression in the joints. Consequently, LNP-Col II-R injection inhibited chondrocyte apoptosis and cartilage matrix degradation and relieved pain, while injection of LNPs loaded with a control peptide and rapamycin did not induce these events. Adoptive transfer of CD4+CD25+ T cells isolated from LNP-Col II-R-injected mice suggested that Tregs induced by LNP-Col II-R injection were likely responsible for the therapeutic effects. Collectively, this study suggests nanoparticle-mediated immunomodulation in the joint as a simple and effective treatment for OA.


Asunto(s)
Nanopartículas , Osteoartritis , Ratones , Animales , Colágeno Tipo II/efectos adversos , Linfocitos T Reguladores/metabolismo , Osteoartritis/terapia , Osteoartritis/metabolismo , Citocinas/metabolismo , Antiinflamatorios/uso terapéutico , Sirolimus/farmacología
11.
Front Immunol ; 13: 930511, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36325344

RESUMEN

Osteoarthritis (OA) reduces the quality of life as a result of the pain caused by continuous joint destruction. Inactivated Lactobacillus (LA-1) ameliorated osteoarthritis and protected cartilage by modulating inflammation. In this study, we evaluated the mechanism by which live LA-1 ameliorated OA. To investigate the effect of live LA-1 on OA progression, we administered LA-1 into monosodium iodoacetate (MIA)-induced OA animals. The pain threshold, cartilage damage, and inflammation of the joint synovial membrane were improved by live LA-1. Furthermore, the analysis of intestinal tissues and feces in the disease model has been shown to affect the systems of the intestinal system and improve the microbiome environment. Interestingly, inflammation of the intestinal tissue was reduced, and the intestinal microbiome was altered by live LA-1. Live LA-1 administration led to an increase in the level of Faecalibacterium which is a short-chain fatty acid (SCFA) butyrate-producing bacteria. The daily supply of butyrate, a bacterial SCFA, showed a tendency to decrease necroptosis, a type of abnormal cell death, by inducing autophagy and reversing impaired autophagy by the inflammatory environment. These results suggest that OA is modulated by changes in the gut microbiome, suggesting that activation of autophagy can reduce aberrant cell death. In summary, live LA-1 or butyrate ameliorates OA progression by modulating the gut environment and autophagic flux. Our findings suggest the regulation of the gut microenvironment as a therapeutic target for OA.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Condrocitos/metabolismo , Cartílago Articular/metabolismo , Butiratos/metabolismo , Lactobacillus , Calidad de Vida , Modelos Animales de Enfermedad , Osteoartritis/metabolismo , Inflamación/metabolismo , Autofagia , Muerte Celular
12.
Immune Netw ; 22(4): e34, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36081528

RESUMEN

Osteoarthritis (OA) is the most common form of arthritis associated with ageing. Vitamin D has diverse biological effect on bone and cartilage, and observational studies have suggested it potential benefit in OA progression and inflammation process. However, the effect of vitamin D on OA is still contradictory. Here, we investigated the therapeutic potential of vitamin D in OA. Six-week-old male Wistar rats were injected with monosodium iodoacetate (MIA) to induce OA. Pain severity, cartilage destruction, and inflammation were measured in MIA-induced OA rats. Autophagy activity and mitochondrial function were also measured. Vitamin-D (1,25(OH)2D3) and celecoxib were used to treat MIA-induced OA rats and OA chondrocytes. Oral supplementation of vitamin D resulted in significant attenuations in OA pain, inflammation, and cartilage destruction. Interestingly, the expressions of MMP-13, IL-1ß, and MCP-1 in synovial tissues were remarkably attenuated by vitamin D treatment, suggesting its potential to attenuate synovitis in OA. Vitamin D treatment in OA chondrocytes resulted in autophagy induction in human OA chondrocytes and increased expression of TFEB, but not LC3B, caspase-1 and -3, in inflamed synovium. Vitamin D and celecoxib showed a synergistic effect on antinociceptive and chondroprotective properties in vivo. Vitamin D showed the chondroprotective and antinociceptive property in OA rats. Autophagy induction by vitamin D treatment may be a promising treatment strategy in OA patients especially presenting vitamin D deficiency. Autophagy promoting strategy may attenuate OA progression through protecting cells from damage and inflammatory cell death.

13.
Gut Microbes ; 14(1): 2102885, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35951731

RESUMEN

ABBREVIATIONS: LT, liver transplantation; HCC, hepatocellular carcinoma; IS, immunosuppressants; DC, dendritic cells; Treg, regulatory T; Th17, T helper 17; AST, aspartate transaminase; ALT, alanine transaminase; OUT, operational taxonomic unit; LEfSe, linear discriminant analysis effect size; LDA, linear discriminant analysis; IL, interleukin; TGF, transforming growth factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFN, interferon; TNF-α, tumor necrosis factor-α; MIP-1α, macrophage inflammatory protein-1α; IP-10, interferon γ-induced protein; MCP-1, monocyte chemoattractant protein-1; ACR, acute cellular rejection; NF-κB, nuclear factor κB; PT INR, prothrombin time; QC, quality check; PBMC, peripheral blood mononuclear cells; PBS, phosphate-buffered saline; ELISA, enzyme-linked immunosorbent assay.


Asunto(s)
Carcinoma Hepatocelular , Microbioma Gastrointestinal , Neoplasias Hepáticas , Trasplante de Hígado , Citocinas , Faecalibacterium/metabolismo , Homeostasis , Humanos , Leucocitos Mononucleares/metabolismo , FN-kappa B , Factor de Necrosis Tumoral alfa/metabolismo
14.
J Transl Med ; 20(1): 104, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35216600

RESUMEN

BACKGROUND: Graft-versus-host disease (GvHD) is a critical complication after allogeneic hematopoietic stem cell transplantation (HSCT). The immunosuppressants given to patients undergoing allogeneic HSCT disturb the microbiome and the host immune system, potentially leading to dysbiosis and inflammation, and may affect immune function and bone marrow transplantation. The intestinal microbiome is a target for the development of novel therapies for GvHD. Lactobacillus species are widely used supplements to induce production of antimicrobial and anti-inflammatory factors. METHODS: We determined the effect of the combination of Lactobacillus acidophilus and FK506 on GvHD following major histocompatibility complex-mismatched bone marrow transplantation. RESULTS: The combination treatment suppressed IFN-γ and IL-17-producing T cell differentiation, but increased Foxp3+Treg differentiation and IL-10 production. Also, the combination treatment and combination treated-induced Treg cells modulated the proliferation of murine alloreactive T cells in vitro. Additionally, the combination treatment upregulated Treg-related genes-Nt5e, Foxp3, Ikzf2, Nrp1 and Itgb8-in murine CD4+-T cells. The combination treatment also alleviated GvHD clinically and histopathologically by controlling the effector T cell and Treg balance in vivo. Moreover, the combination treatment decreased Th17 differentiation significantly and significantly upregulated Foxp3 and IL-10 expression in peripheral blood mononuclear cells from healthy controls and liver transplantation (LT) patients. CONCLUSIONS: Therefore, the combination of L. acidophilus and FK506 is effective and safe for patients undergoing allogeneic hematopoietic stem cell transplantation.


Asunto(s)
Enfermedad Injerto contra Huésped , Linfocitos T Reguladores , Enfermedad Aguda , Animales , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Humanos , Lactobacillus acidophilus , Leucocitos Mononucleares , Ratones , Ratones Endogámicos C57BL , Tacrolimus/farmacología , Tacrolimus/uso terapéutico
15.
Front Immunol ; 12: 736196, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867956

RESUMEN

The potential therapeutic effects of probiotic bacteria in rheumatoid arthritis (RA) remain controversial. Thus, this study aimed to discover potential therapeutic bacteria based on the relationship between the gut microbiome and rheumatoid factor (RF) in RA. Bacterial genomic DNA was extracted from the fecal samples of 93 RA patients and 16 healthy subjects. Microbiota profiling was conducted through 16S rRNA sequencing and bioinformatics analyses. The effects of Bifidobacterium strains on human peripheral blood mononuclear cells and collagen-induced arthritis (CIA) mice were assessed. Significant differences in gut microbiota composition were observed in patients with different RF levels. The relative abundance of Bifidobacterium and Collinsella was lower in RF-high than in RF-low and RF-negative RA patients, while the relative abundance of Clostridium of Ruminococcaceae family was higher in RF-high than in RF-low and RF-negative patients. Among 10 differentially abundant Bifidobacterium, B. longum RAPO exhibited the strongest ability to inhibit IL-17 secretion. Oral administration of B. longum RAPO in CIA mice, obese CIA, and humanized avatar model significantly reduced RA incidence, arthritis score, inflammation, bone damage, cartilage damage, Th17 cells, and inflammatory cytokine secretion. Additionally, B. longum RAPO significantly inhibited Th17 cells and Th17-related genes-IL-17A, IRF4, RORC, IL-21, and IL-23R-in the PBMCs of rheumatoid arthritis patients. Our findings suggest that B. longum RAPO may alleviate RA by inhibiting the production of IL-17 and other proinflammatory mediators. The safety and efficacy of B. longum RAPO in patients with RA and other autoimmune disorders merit further investigation.


Asunto(s)
Artritis Reumatoide/inmunología , Artritis Reumatoide/terapia , Bifidobacterium/inmunología , Bifidobacterium/aislamiento & purificación , Microbioma Gastrointestinal/inmunología , Probióticos/uso terapéutico , Factor Reumatoide/sangre , Adulto , Animales , Artritis Experimental/inmunología , Artritis Experimental/terapia , Bifidobacterium/genética , Biodiversidad , Estudios de Casos y Controles , Femenino , Microbioma Gastrointestinal/genética , Humanos , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos DBA , Ratones Endogámicos NOD , Ratones Obesos , Ratones SCID , Persona de Mediana Edad , Células Th17/inmunología
16.
PLoS One ; 16(12): e0259130, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34855756

RESUMEN

The green-lipped mussel (GLM) contains novel omega-3 polyunsaturated fatty acids, which exhibit anti-inflammatory and joint-protecting properties. Osteoarthritis (OA) is a degenerative joint disease characterized by a progressive loss of cartilage; oxidative stress plays a role in the pathogenesis of OA. The objectives of this study were to investigate the in vivo effects of the GLM on pain severity and cartilage degeneration using an experimental rat OA model, and to explore the mode of action of GLM. OA was induced in rats by intra-articular injection of monosodium iodoacetate (MIA) into the knee. Oral GLM was initiated on the day after 3dyas of MIA injection. Limb nociception was assessed by measuring the paw withdrawal latency and threshold. Samples were analyzed both macroscopically and histologically. Immunohistochemistry was used to investigate the expression of interleukin-1ß (IL-1ß), IL-6, nitrotyrosine, and inducible nitric oxide synthase (iNOS) in knee joints. Also, the GLM was applied to OA chondrocyte, and the expression on catabolic marker and necroptosis factor were evaluated by real-time polymerase chain reaction. Administration of the GLM improved pain levels by preventing cartilage damage and inflammation. GLM significantly attenuated the expression levels of mRNAs encoding matrix metalloproteinase-3 (MMP-3), MMP-13, and ADAMTS5 in IL-1ß-stimulated human OA chondrocytes. GLM decreased the expression levels of the necroptosis mediators RIPK1, RIPK3, and the mixed lineage kinase domain-like protein (MLKL) in IL-1ß-stimulated human OA chondrocytes. Thus, GLM reduced pain and cartilage degeneration in rats with experimentally induced OA. The chondroprotective properties of GLM included suppression of oxidative damage and inhibition of catabolic factors implicated in the pathogenesis of OA cartilage damage. We suggest that GLM may usefully treat human OA.


Asunto(s)
Antiinflamatorios/farmacología , Bivalvos/metabolismo , Ácidos Grasos Omega-3/farmacología , Inflamación/tratamiento farmacológico , Osteoartritis/tratamiento farmacológico , Dolor/tratamiento farmacológico , Animales , Masculino , Ratas , Ratas Wistar
18.
Front Immunol ; 12: 652709, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211461

RESUMEN

Small heterodimer partner interacting leucine zipper protein (SMILE) is an orphan nuclear receptor and a member of the bZIP family of proteins. We investigated the mechanism by which SMILE suppressed the development of inflammatory bowel disease (IBD) using a DSS-induced colitis mouse model and peripheral blood mononuclear cells (PBMCs) from patients with ulcerative colitis (UC). Metformin, an antidiabetic drug and an inducer of AMPK, upregulated the level of SMILE in human intestinal epithelial cells and the number of SMILE-expressing cells in colon tissues from DSS-induced colitis mice compared to control mice. Overexpression of SMILE using a DNA vector reduced the severity of DSS-induced colitis and colitis-associated intestinal fibrosis compared to mock vector. Furthermore, SMILE transgenic mice showed ameliorated DSS-induced colitis compared with wild-type mice. The mRNA levels of SMILE and Foxp3 were downregulated and SMILE expression was positively correlated with Foxp3 in PBMCs from patients with UC and an inflamed mucosa. Metformin increased the levels of SMILE, AMPK, and Foxp3 but decreased the number of interleukin (IL)-17-producing T cells among PBMCs from patients with UC. These data suggest that SMILE exerts a therapeutic effect on IBD by modulating IL-17 production.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/metabolismo , Leucina Zippers/genética , Metformina/farmacología , Multimerización de Proteína/efectos de los fármacos , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Femenino , Humanos , Inmunohistoquímica , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Transgénicos , Unión Proteica
19.
Cells ; 10(5)2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946919

RESUMEN

Osteoarthritis (OA) is the most common form of arthritis and age-related degenerative joint disorder, which adversely affects quality of life and causes disability. However, the pathogenesis of OA remains unclear. This study was performed to examine the effects of Lactobacillus rhamnosus in OA progression. OA was induced in 6-week-old male Wistar rats by monosodium iodoacetate (MIA) injection, and the effects of oral administration of L. rhamnosus were examined in this OA rat model. Pain severity, cartilage destruction, and inflammation were measured in MIA-induced OA rats. The small intestines were isolated from OA rats, and the intestinal structure and inflammation were measured. Protein expression in the dorsal root ganglion was analyzed by immunohistochemistry. The effects of L. rhamnosus on mRNA and protein expression in chondrocytes stimulated with interleukin (IL)-1ß and lipopolysaccharide (LPS) were analyzed by real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). Pain severity was decreased in L. rhamnosus-treated MIA-induced OA rats. The levels of expression of MCP-1, a potential inflammatory cytokine, and its receptor, CCR2, were decreased, and GABA and PPAR-γ expression were increased in L. rhamnosus-treated OA rats. The inflammation, as determined by IL-1ß, and cartilage destruction, as determined by MMP3, were also significantly decreased by L. rhamnosus in OA rats. Additionally, intestinal damage and inflammation were improved by L. rhamnosus. In human OA chondrocytes, TIMP1, TIMP3, SOX9, and COL2A1 which are tissue inhibitors of MMP, and IL-10, an anti-inflammatory cytokine, were increased by L. rhamnosus. L. rhamnosus treatment led to decreased pain severity and cartilage destruction in a rat model of OA. Intestinal damage and inflammation were also decreased by L. rhamnosus treatment. Our findings suggested the therapeutic potential of L. rhamnosus in OA.


Asunto(s)
Terapia Biológica/métodos , Lacticaseibacillus rhamnosus/patogenicidad , Osteoartritis/terapia , Manejo del Dolor/métodos , Probióticos , Animales , Células Cultivadas , Quimiocina CCL2/metabolismo , Condrocitos/metabolismo , Colágeno/metabolismo , Ganglios Espinales/metabolismo , Humanos , Interleucina-1beta/metabolismo , Articulaciones/metabolismo , Articulaciones/patología , Osteoartritis/microbiología , PPAR gamma/metabolismo , Ratas , Ratas Wistar , Receptores CCR2/metabolismo , Factor de Transcripción SOX9/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Inhibidor Tisular de Metaloproteinasa-3/metabolismo
20.
PLoS One ; 16(2): e0245986, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33592002

RESUMEN

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is an important transcription factor that plays a pivotal role in cellular defense against oxidative injury. Nrf2 signaling is involved in attenuating autoimmune disorders such as rheumatoid arthritis (RA). B cells play several roles in the pathogenesis of RA, such as in autoantibody production, antigen presentation, and T-cell activation. We investigated the anti-arthritic mechanisms of sulforaphane, an activator of Nrf2, in terms of its effect on B cells. To investigate the effect of sulforaphane on collagen-induced arthritis (CIA), sulforaphane was administered intraperitoneally after CIA induction. Hematoxylin and eosin-stained sections were scored for inflammation, pannus invasion, and bone and cartilage damage. We assessed the expression levels of inflammation-related factors by real-time PCR and the levels of various IgG subclasses by enzyme-linked immunosorbent assay. Sulforaphane treatment reduced the arthritis score and the severity of histologic inflammation in CIA mice. The joints from sulforaphane-treated CIA mice showed decreased expression of interleukin (IL)-6, IL-17, tumor necrosis factor (TNF)-α, receptor activator of NF-κB ligand, and tartrate-resistant acid phosphatase. Sulforaphane-treated mice showed lower circulating levels of type-II-collagen-specific IgG, IgG1, and IgG2a. In vitro, sulforaphane treatment significantly reduced the differentiation of lipopolysaccharide-stimulated murine splenocytes into plasma B cells and germinal-center B cells. Finally, sulforaphane significantly inhibited the production of IL-6, TNF-α, and IL-17 by human peripheral blood mononuclear cells stimulated with an anti-CD3 monoclonal antibody in a dose-dependent manner. Inhibition of differentiation into plasma B and Germinal Center B cells may be the mechanism underlying the anti-arthritic effect of sulforaphane.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Linfocitos B/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Citocinas/biosíntesis , Isotiocianatos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Sulfóxidos/farmacología , Animales , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Linfocitos B/patología , Citocinas/metabolismo , Inflamación/metabolismo , Isotiocianatos/uso terapéutico , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Masculino , Ratones , Sulfóxidos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA